The Decarbonisation Journey of the Aluminium Industry Opportunities and Challenges to Achieve Net-Zero

Dr. Martin Iffert MARTIN IFFERT CONSULTING GmbH EP ENERGY POOL GmbH

Presented by: Dr. Martin Iffert

Martin's Bio

Dr. Martin Iffert

Master Electrical Eng. (1993 RWTH Aachen) PhD Chemical Eng. (2007 UNSW Sydney) Executive MBA (2009 IMD Lausanne)

The Networker for the Industry

Dr. Martin Iffert's Biography

- 30 years experience in Aluminium Smelting
- Former CEO of TRIMET and PdG TRIMET France
- Former President of German Association WVM
- Advisor for Policy Makers
- Advocate for Flexibility and Sustainability
- Founder of the Virtual Battery Concept

MARTIN IFFERT CONSULTING GmbH

- Boutique Consulting Firm for Aluminium and Energy-Intensive Industries
- Operation, Leadership, Energy Politics, M&A

EP ENERGY POOL GmbH

- Flexibilization of Energy-Intensive Industries
- Centre of Excellence for Aluminium Smelting

Decarbonization...

Contents

- The World on Fire
- Aluminium Demand with Strong Potential
- Greenhouse Gas Emissions and Decarbonisation Scenarios
- Decarbonisation Strategies for the Aluminium Industry
- Aluminium as an Energy Carrier
- Flexibility is the new Scarcity
- Conclusion

Fear is the path to the dark side...

Fear leads to anger. Anger leads to hate. Hate leads to suffering.

The World on Fire

Public View of Industry has Changed

Wild Fire Canada - Quebec

This photo shows an overhead view of forest fires in the Sept-Îles area from June 2, 2023. On Tuesday, the evacuation order for the city was lifted. (Submitted by André Michel)

Public View of Industry has Changed

What is your License to **Operate?**

When you look at the dark side, careful you must be. *For the dark side looks back*

Aluminium Demand with Strong Potential

Aluminium Semis Demand in Sectors

- Strong growth in Transport, Electrical Equipment and Infrastructure is triggered by the energy transition with electrification of the society
- Aluminium can gain market share from competing materials due to its superior material performance and recyclability
- > Long product life in many application require strong production from primary metal sources

		Ctool	Connor		Clas	\\/aad	2020	2030	2050
	Product Lifetime	Steel	Copper	Plastic	Glas	wood	CRU	CRU	extra- polation
Construction	15 - 50 Years						21,3	25,9	38,7
Electrical & Mechanic	25 - 50 Years						20,2	28,3	42,3
Tranportation	10 - 30 Years						19,9	31,7	47,4
Packaging	6 - 12 Months						15,0	20,5	30,6
Others	10 - 15 Years						10,1	13,4	20,0
		Opportunity	RISK				86,5	119,8	179,0

41st ICSOBA International Conference and Exhibition

6 - 9 November 2023, Dubai, UAE

Aluminium In-Use-Stock – Actual & Projections

"Do, or do not. There is no try."

Greenhouse Gas Emissions and Decarbonisation **Scenarios**

Cradle-to-Gate Emissions - Scopes

1963-2023

The Aluminium Industry Forum

AL Value Chain

2.0 & 1.5 DEGREES SCENARIO from IAI

Categorization of Primary Aluminium Emission

Global							
(tonnes CO _{2e} per tonne Primary Al)	Total	Bauxite	Alumina	Ande	Electrolysis	Casting	Total
Electricity-Indirect	10.6	Renew	vable Ene	rgies	65%		67%
Perfluorocarbon (PFC) - Direct	0.6	Al Pro	ocess Con	trol	3%		3%
Process (CO2)-Direct	1.5	Cark	oon Captu	ire 🦄	9%		10%
Ancillary Materials-Indirect	0.6		1%	2%	1%		4%
Thermal Energy-Direct/Indirect	2.1	0%	11%	1%		1%	13%
Transport-Direct	0.5		2%		2%		3%
Total-Cradle to Gate	15.9	0%	16%	3%	80%	1%	100%

Decarbonisation Strategies for the Aluminium Industry

Smelter Decarbonization Race

CCS with x% Bio-Pitch-Coke is equal to Inert Anodes in terms of CO₂

CPC ANODES with CCS & CCU De-Carbonization added after process

BIO-BASED ANODES Exchange CPC with Bio-Mass

- All processes can decarbonise the production of aluminium
- ➤ A combination of BIO-BASED Anodes with CCS could even create a CO₂ sink → depending on sustainably produced bio-mass

Power Intensity of Industries

- ➤ Aluminium Smelters are at the low end of the "Electrical Food Chain" → Smelters could be successful in stranded situation without electrical competition
- Grid connected smelters could be successful, if grid was populated with abundant cheap and dispatchable power (e.g. Canada, Norway)
- ➢ Hydrogen will compete with smelters for power, but likely even lower on the "Food Chain" → Hydrogen and Aluminium Smelters could be complimentary successful

CCS in different Industries & Smelter

A Jedi's strength flows from the Force

Aluminium is an Energy Carrier

World Renewable Energies

BNEF expects Electricity Generation to exceed 100,000 TWh by 2050 in a Renewable Intensive Scenario

GREEN Aluminium vs. GREEN Hydrogen

- Aluminium by far the biggest energy carrier today
- IEA forecast that hydrogen will be btw.
 1.5x to 6x the size of aluminium by
 2030
- Hydrogen and aluminium production are "twins"
- > Aluminium smelter CAPEX @ 4 \$/W
- ► H₂ Electrolyser CAPEX @ 1 \$/W

Potential long-distance Green Energy Carrier are Hydrogen, Ammonia, Green Steel, Green Aluminium 50 MWh \rightarrow 1 t H₂ \rightarrow 12.5 MWh Power \rightarrow 1 t Aluminium (without H₂ transport losses)

What Direction to Take?

Seeking for Solutions that are Affordable and Achievable

KnowledgeNetZero Technologies

Achieve climate goals through renunciation

Carbon Free Smelter Supply Options

Hydro and Geothermal Power are already essential base load supply options for smelters, but most resources have been exploited and won't fill the 70% supply gap

Carbon Free Smelter Supply Options 1,750 MW

- Stranded Hydro was the most economical choice for smelters in the past
- Wind+PV+Hydrogen as baseload option
- Government subsidised nuclear and lignite gained market shares in the '70s, followed by stranded gas in the Middle East in the '80s
- Internalization of CO₂ costs is a very European Scheme (and smelters are compensated for the costs)

Dowor Diant	CAPEX	CAPEX	OPEX	Interest	CAPEX	O&M	Fuel	CO2	LCOE	LME Ratio	LCOE	LME Ratio
Type	Life		25 years		\$/MWh	\$/MWh	§/MWh	\$/MWh	\$/MWh	@2,500\$/t %	\$/MWh	@2,500\$/t %
Hydro	75 Years	USD 8 bn	USD 4 bn	5,0%	26	10			36 \$/MWh	22%	36 \$/MWh	22%
Gas CCGT	50 Years	USD 2 bn	USD 21 bn	7,5%	10	5	50	40	105 \$/MWh	63%	65 \$/MWh	39%
Coal	50 Years	USD 4 bn	USD 20 bn	7,5%	21	10	43	85	159 \$/MWh	95%	74 \$/MWh	44%
Nuclear	50 Years	USD 9 bn	USD 8 bn	10,0%	61	15	7		83 \$/MWh	50%	83 \$/MWh	50%
Wind/PV with Battery/Hydrogen	25 Years	USD 9 bn	USD 4 bn	5,0%	40	10			50 \$/MWh	30%	50 \$/MWh	30%

41st ICSOBA International Conference and Exhibition

6 - 9 November 2023, Dubai, UAE

Train yourself to let go of everything you fear to lose

Flexibility is the new Scarcity

New Locations for Energy Intensive Processes

BUSINESS | NAMIBIA

Germany eyes Namibia's green hydrogen

Jasko Rust | Lisa Ossenbrink 12/02/2022

Namibia wants to become one of the world's leading producers of green hydrogen. Germany is interested in the project, but not everyone is cheering in Namibia. 6 GW Renewables 15 TWh Electricity 3 GW Electrolyser USD 10 bn CAPEX 300 kt/a H2

(could also power 1 Mt smelter)

@2,500 USD/t LME \rightarrow 12% Ratio \rightarrow 24% Ratio \rightarrow 36% Ratio

Martin IFFERT

41st ICSOBA International Conference and Exhibition 6 - 9 November 2023, Dubai, UAE

28

Balancing Services of Aluminium Smelters

Aluminium smelter: Development Side Wall Heat Loss Development

The Aluminium Industry Forum

41st ICSOBA International Conference and Exhibition 6 - 9 November 2023, Dubai, UAE

NSULTING

VIRTUAL BATTERY Example

Virtual Battery Components

Aluminium Production Value Chain CAPEX

1963-2023 6 - 9 November 2023, Dubai, UAE

Investment Incentives

		EBITDA per t Al	CAPEX per anual ton	Pay Back Period
Aluminium Smelter	LME+MB/MW = 2,500 USD/t	500 \$/t Al	6,000 \$/t Al	12 years
Carbon Capture	Green Premium = 250 USD/t	100 \$/t Al	900 \$/t Al	9 years
Flex + Heat	Power Discount 5 USD/MWh _{El} Heat 16 USD/MWh _{th}	100 \$/t Al	300 \$/t Al	3 years

Conclusion

Conclusion

NEAR ZERO ALUMINIUM is achievable

It requires:

- No Accounting Loopholes and Greenwashing
- Combine Flexibility and Heat Recovery
- ➢ Green Premium of 10-20% of LME

My boss told me to have a good day...

So I went home.

THANKS for your ATTENTION

